Ausblick: Januar 2019

ANIM 2019 in Berlin

Zwei unabhängige Studien zur klinischen Anwendung unseres Systems werden im Rahmen der Arbeitstagung NeuroIntensivMedizin (ANIM) 17. - 19. Januar 2019 in Berlin vorgestellt.

www.anim.de

 

November 2018

Erfolgreiche Re-Zertifizierung des Qualitätsmanagementsystems nach ISO 13485:2016 durch den TÜV SÜD

 

August 2018

Publikation einer unabhängigen Safety und Feasibility Studie in Neurocritical Care

PubMed link

 

Safety, Feasibility, and Efficiency of a New Cooling Device Using Intravenous Cold Infusions for Fever Control.

Willms JF1, Boss O2, Keller E2

Abstract

BACKGROUND:

Fever control plays a key role in therapy of patients with acute brain injury. The infusion of cold saline could serve as an alternative or additional method for targeted temperature management. However, it is difficult to estimate the amount of fluid required to achieve normothermia merely on the basis of body weight. There is no standardized load management regarding the administration of cold saline, and no closed-loop systems based on continuous temperature-controlled feedback are available. The primary purpose of the present study was to evaluate the feasibility, efficacy, and safety of a new automated fluid infusion system.

METHODS:

Twelve patients with acute brain injury and febrile episodes were treated with the automated infusion device tempedy (seiratherm GmbH, Herzogenaurach, Germany). Patients were included if bladder temperature still was ≥ 37.9 °C after administration of antipyretic medication, cold washing solutions, and ice packs more than 2 h earlier. The efficacy was examined by measuring the time and amount of fluid needed to reach and maintain target temperature. Feasibility and safety were assessed based on recording any technical difficulties with the new device and the occurrence of clinical signs of fluid overload such as acute pulmonary edema, electrolyte disturbances, or acid-base dysfunction.

RESULTS:

The mean time was 73 min (range from 15 to 330 min) and 1650 ml the mean amount of fluid (21.2 ml/kg; SD 28.5 ml/kg) to reach the target temperature. The mean total fluid balance to reach and maintain the target temperature in the first 12 h was 1350 ml (SD 1550 ml). In the first 12 h 89.4% of the time temperature values were in the target range (median 95.3%, range 83.8-10%). No clinical signs of fluid overload such as an acute pulmonary edema or device-related adverse events occurred.

CONCLUSION:

Target temperature management with the new automated infusion device is feasible. Although we provided first data regarding safety, further controlled randomized studies are needed to evaluate the long-time safety, as well as the best indications and timing for this cooling device.